A QIIME 2 plugin for solving General Graphical Lasso (GGLasso) problems with microbiome data including:
- Single Graphical Lasso (SGL)
- Adaptive SGL
- SGL with latent variables
- Multiple Graphical Lasso (MGL)
- MGL with latent variables
- GGL in the nonconforming case
📚 Documentation | 📂 Tutorial & Examples
Installation¶
First, make sure you have GGLasso is installed:
conda install -q gglasso
OR
pip install gglasso
Next to install the plugin:
pip install git+https://github.com/bio-datascience/q2-gglasso.git
qiime dev refresh-cache
Usage Tutorial¶
A complete tutorial on using q2-gglasso
for microbiome data analysis — including preprocessing, CLR transformation, model fitting, and visualization — is available at:
👉 Atacama Soil Microbiome Tutorial
This tutorial includes:
- Input formatting and CLR transformation
- Applications of SGL, adaptive SGL, and SGL with latent variables
- Network visualizations of ASV associations
- Covariate analysis and interpretation
Citation¶
If you use q2-gglasso
, please cite:
Schaipp, F., Vlasovets, O., & Müller, C. L. (2021). GGLasso – a Python package for General Graphical Lasso computation. Journal of Open Source Software, 6(68), 3865. https://doi.org/10.21105/joss.03865
Related Projects¶
gglasso
: Python solvers for graphical lasso problemsatacama-soil-microbiome-tutorial
: Full tutorial and example analyses
License¶
BSD 3-Clause License. See LICENSE for details.
- Links
- Documentation
- Source Code
- Stars
- 1
- Last Commit
- 5aebb7e
- Available Distros
- 2025.4
- 2025.4/amplicon