This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]

This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]

This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]

This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]

This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]

This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]

This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]

This QIIME 2 plugin supports methods for compositional data analysis.

version: 2024.10.0
website: https://github.com/qiime2/q2-composition
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
add-pseudocountmethodAdd pseudocount to table.
ancombcmethodAnalysis of Composition of Microbiomes with Bias Correction
ancomvisualizerApply ANCOM to identify features that differ in abundance.
tabulatevisualizer View tabular output from ANCOM-BC.
da-barplotvisualizerDifferential abundance bar plots

Artifact Classes

FeatureData[DifferentialAbundance]

Formats

FrictionlessCSVFileFormat
DataPackageSchemaFileFormat
DataLoafPackageDirFmt


composition add-pseudocount

Increment all counts in table by pseudocount.

Inputs

table: FeatureTable[Frequency]

The feature table to which pseudocounts should be added.[required]

Parameters

pseudocount: Int

The value to add to all counts in the feature table.[default: 1]

Outputs

composition_table: FeatureTable[Composition]

The resulting feature table.[required]


composition ancombc

Apply Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) to identify features that are differentially abundant across groups.

Citations

Lin & Peddada, 2020

Inputs

table: FeatureTable[Frequency]

The feature table to be used for ANCOM-BC computation.[required]

Parameters

metadata: Metadata

The sample metadata.[required]

formula: Str

How the microbial absolute abundances for each taxon depend on the variables within the metadata.[required]

p_adj_method: Str % Choices('holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none')

Method to adjust p-values.[default: 'holm']

prv_cut: Float

A numerical fraction between 0-1. Taxa with prevalences less than this value will be excluded from the analysis.[default: 0.1]

lib_cut: Int

A numerical threshold for filtering samples based on library sizes. Samples with library sizes less than this value will be excluded from the analysis.[default: 0]

reference_levels: List[Str]

Define the reference level(s) to be used for categorical columns found in the formula. These categorical factors are dummy coded relative to the reference(s) provided. The syntax is as follows: "column_name::column_value"[optional]

tol: Float

The iteration convergence tolerance for the E-M algorithm.[default: 1e-05]

max_iter: Int

The maximum number of iterations for the E-M algorithm.[default: 100]

conserve: Bool

Whether to use a conservative variance estimator for the test statistic. It is recommended if the sample size is small and/or the number of differentially abundant taxa is believed to be large.[default: False]

alpha: Float

Level of significance.[default: 0.05]

Outputs

differentials: FeatureData[DifferentialAbundance]

The calculated per-feature differentials.[required]

Examples

ancombc_single_formula

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/1/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula bodysite \
  --o-differentials dataloaf.qza

ancombc_multi_formula_with_reference_levels

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/table.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/composition/ancombc/2/metadata.tsv'

qiime composition ancombc \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-formula 'bodysite + animal' \
  --p-reference-levels bodysite::tongue animal::dog \
  --o-differentials dataloaf.qza

composition ancom

Apply Analysis of Composition of Microbiomes (ANCOM) to identify features that are differentially abundant across groups.

Citations

Mandal et al., 2015

Inputs

table: FeatureTable[Composition]

The feature table to be used for ANCOM computation.[required]

Parameters

metadata: MetadataColumn[Categorical]

The categorical sample metadata column to test for differential abundance across.[required]

transform_function: Str % Choices('sqrt', 'log', 'clr')

The method applied to transform feature values before generating volcano plots.[default: 'clr']

difference_function: Str % Choices('mean_difference', 'f_statistic')

The method applied to visualize fold difference in feature abundances across groups for volcano plots.[optional]

filter_missing: Bool

If True, samples with missing metadata values will be filtered from the table prior to analysis. If False, an error will be raised if there are any missing metadata values.[default: False]

Outputs

visualization: Visualization

<no description>[required]


composition tabulate

Generate tabular view of ANCOM-BC output, which includes per-page views for the log-fold change (lfc), standard error (se), P values, Q values, and W scores.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be tabulated.[required]

Outputs

visualization: Visualization

<no description>[required]


composition da-barplot

Generate bar plot views of ANCOM-BC output. One plot will be present per column in the ANCOM-BC output. The significance_threshold, effect_size_threshold and feature_ids filter results are intersected, such that only features that remain after all three filters have been applied will be present in the output.

Inputs

data: FeatureData[DifferentialAbundance]

The ANCOM-BC output to be plotted.[required]

Parameters

effect_size_label: Str

Label for effect sizes in data.[default: 'lfc']

feature_id_label: Str

Label for feature ids in data.[default: 'id']

error_label: Str

Label for effect size errors in data.[default: 'se']

significance_label: Str

Label for statistical significance level in data.[default: 'q_val']

significance_threshold: Float % Range(0.0, 1.0, inclusive_end=True)

Exclude features with statistical significance level greater (i.e., less significant) than this threshold.[default: 1.0]

effect_size_threshold: Float % Range(0.0, None)

Exclude features with an absolute value of effect size less than this threshold.[default: 0.0]

feature_ids: Metadata

Exclude features if their ids are not included in this index.[optional]

level_delimiter: Str

If feature ids encode hierarchical information, split the levels when generating feature labels in the visualization using this delimiter.[optional]

label_limit: Int

Set the maximum length that will be viewable for axis labels. You can set this parameter if your axis labels are being cut off.[optional]

Outputs

visualization: Visualization

<no description>[required]