This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2025.10.0.dev0 - website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
| Name | Type | Short Description |
|---|---|---|
| denoise-16S | method | Deblur sequences using a 16S positive filter. |
| denoise-other | method | Deblur sequences using a user-specified positive filter. |
| visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qzafrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16Stool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza - Set "trim_length" to
120 - Expand the
additional optionssection- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Executebutton.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qzatable.qza#: qiime2 deblur denoise-16S [...] : representative_sequences.qzarepresentative-sequences.qza#: qiime2 deblur denoise-16S [...] : stats.qzadenoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality] The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence] Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int%Range(0, None) Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0]- sample_stats:
Bool If true, gather stats per sample.[default:
False]- mean_error:
Float The mean per nucleotide error, used for original sequence estimate.[default:
0.005]- indel_prob:
Float Insertion/deletion (indel) probability (same for N indels).[default:
0.01]- indel_max:
Int Maximum number of insertion/deletions.[default:
3]- min_reads:
Int Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10]- min_size:
Int In each sample, discard all features with an abundance less than min_size.[default:
2]- jobs_to_start:
Threads Number of jobs to start (if to run in parallel).[default:
1]- hashed_feature_ids:
Bool If true, hash the feature IDs.[default:
True]
Outputs¶
- table:
FeatureTable[Frequency] The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence] The resulting feature sequences.[required]
- stats:
DeblurStats Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization <no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzvfrom qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)- Using the
Upload Datatool: - On the first tab (Regular), press the
Paste/Fetchdata button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza - In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Startbutton at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-statstool: - Set "deblur_stats" to
#: deblur-stats.qza - Press the
Executebutton.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Editbutton to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzvdeblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
- Links
- Documentation
- Source Code
- Stars
- 3
- Last Commit
- c2eea97
- Available Distros
- 2025.10
- 2025.10/amplicon
- 2025.7
- 2025.7/amplicon
- 2025.4
- 2025.4/amplicon
- 2024.10
- 2024.10/amplicon
- 2024.5
- 2024.5/amplicon
- 2024.2
- 2024.2/amplicon
- 2023.9
- 2023.9/amplicon
- 2023.7
- 2023.7/core