This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
This QIIME 2 plugin wraps the Deblur software for performing sequence quality control.
- version:
2024.10.0
- website: https://
github .com /biocore /deblur - user support:
- Please post to the QIIME 2 forum for help with this plugin: https://
forum .qiime2 .org - citations:
- Amir et al., 2017
Actions¶
Name | Type | Short Description |
---|---|---|
denoise-16S | method | Deblur sequences using a 16S positive filter. |
denoise-other | method | Deblur sequences using a user-specified positive filter. |
visualize-stats | visualizer | Visualize Deblur stats per sample. |
Artifact Classes¶
DeblurStats |
Formats¶
DeblurStatsFmt |
DeblurStatsDirFmt |
deblur denoise-16S¶
Perform sequence quality control for Illumina data using the Deblur workflow with a 16S reference as a positive filter. Only forward reads are supported at this time. The specific reference used is the 88% OTUs from Greengenes 13_8. This mode of operation should only be used when data were generated from a 16S amplicon protocol on an Illumina platform. The reference is only used to assess whether each sequence is likely to be 16S by a local alignment using SortMeRNA with a permissive e-value; the reference is not used to characterize the sequences.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
Examples¶
denoise_16S¶
wget -O 'demux-filtered.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 120 \
--p-sample-stats \
--o-representative-sequences representative-sequences.qza \
--o-table table.qza \
--o-stats denoising-stats.qza
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn = 'demux-filtered.qza'
request.urlretrieve(url, fn)
demux_filtered = Artifact.load(fn)
table, representative_sequences, denoising_stats = deblur_actions.denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120,
sample_stats=True,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
demux-filtered.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /denoise -16S /1 /demux -filtered .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur denoise-16S
tool: - Set "demultiplexed_seqs" to
#: demux-filtered.qza
- Set "trim_length" to
120
- Expand the
additional options
section- Set "sample_stats" to
Yes
- Set "sample_stats" to
- Press the
Execute
button.
- Set "demultiplexed_seqs" to
- Once completed, for each new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur denoise-16S [...] : table.qza
table.qza
#: qiime2 deblur denoise-16S [...] : representative_sequences.qza
representative-sequences.qza
#: qiime2 deblur denoise-16S [...] : stats.qza
denoising-stats.qza
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/denoise-16S/1/demux-filtered.qza'
fn <- 'demux-filtered.qza'
request$urlretrieve(url, fn)
demux_filtered <- Artifact$load(fn)
action_results <- deblur_actions$denoise_16S(
demultiplexed_seqs=demux_filtered,
trim_length=120L,
sample_stats=TRUE,
)
representative_sequences <- action_results$representative_sequences
table <- action_results$table
denoising_stats <- action_results$stats
from q2_deblur._examples import denoise_16S_example
denoise_16S_example(use)
deblur denoise-other¶
Perform sequence quality control for Illumina data using the Deblur workflow, including positive alignment-based filtering. Only forward reads are supported at this time. This mode of execution is particularly useful when operating on non-16S data. For example, to apply Deblur to 18S data, you would want to specify a reference composed of 18S sequences in order to filter out sequences which do not appear to be 18S. The assessment is performed by local alignment using SortMeRNA with a permissive e-value threshold.
Citations¶
Amir et al., 2017
Inputs¶
- demultiplexed_seqs:
SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]
The demultiplexed sequences to be denoised.[required]
- reference_seqs:
FeatureData[Sequence]
Positive filtering database. Keep all sequences aligning to these sequences.[required]
Parameters¶
- trim_length:
Int
Sequence trim length, specify -1 to disable trimming.[required]
- left_trim_len:
Int
%
Range
(0, None)
Sequence trimming from the 5' end. A value of 0 will disable this trim.[default:
0
]- sample_stats:
Bool
If true, gather stats per sample.[default:
False
]- mean_error:
Float
The mean per nucleotide error, used for original sequence estimate.[default:
0.005
]- indel_prob:
Float
Insertion/deletion (indel) probability (same for N indels).[default:
0.01
]- indel_max:
Int
Maximum number of insertion/deletions.[default:
3
]- min_reads:
Int
Retain only features appearing at least min_reads times across all samples in the resulting feature table.[default:
10
]- min_size:
Int
In each sample, discard all features with an abundance less than min_size.[default:
2
]- jobs_to_start:
Threads
Number of jobs to start (if to run in parallel).[default:
1
]- hashed_feature_ids:
Bool
If true, hash the feature IDs.[default:
True
]
Outputs¶
- table:
FeatureTable[Frequency]
The resulting denoised feature table.[required]
- representative_sequences:
FeatureData[Sequence]
The resulting feature sequences.[required]
- stats:
DeblurStats
Per-sample stats if requested.[required]
deblur visualize-stats¶
Display Deblur statistics per sample
Citations¶
Amir et al., 2017
Inputs¶
- deblur_stats:
DeblurStats
Summary statistics of the Deblur process.[required]
Outputs¶
- visualization:
Visualization
<no description>[required]
Examples¶
visualize_stats¶
wget -O 'deblur-stats.qza' \
'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats-viz.qzv
from qiime2 import Artifact
from urllib import request
import qiime2.plugins.deblur.actions as deblur_actions
url = 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn = 'deblur-stats.qza'
request.urlretrieve(url, fn)
deblur_stats = Artifact.load(fn)
deblur_stats_viz_viz, = deblur_actions.visualize_stats(
deblur_stats=deblur_stats,
)
- Using the
Upload Data
tool: - On the first tab (Regular), press the
Paste/Fetch
data button at the bottom.- Set "Name" (first text-field) to:
deblur-stats.qza
- In the larger text-area, copy-and-paste: https://
amplicon -docs .qiime2 .org /en /latest /data /examples /deblur /visualize -stats /1 /deblur -stats .qza - ("Type", "Genome", and "Settings" can be ignored)
- Set "Name" (first text-field) to:
- Press the
Start
button at the bottom.
- On the first tab (Regular), press the
- Using the
qiime2 deblur visualize-stats
tool: - Set "deblur_stats" to
#: deblur-stats.qza
- Press the
Execute
button.
- Set "deblur_stats" to
- Once completed, for the new entry in your history, use the
Edit
button to set the name as follows: - (Renaming is optional, but it will make any subsequent steps easier to complete.)
History Name "Name" to set (be sure to press [Save]) #: qiime2 deblur visualize-stats [...] : visualization.qzv
deblur-stats-viz.qzv
library(reticulate)
Artifact <- import("qiime2")$Artifact
deblur_actions <- import("qiime2.plugins.deblur.actions")
request <- import("urllib")$request
url <- 'https://amplicon-docs.qiime2.org/en/latest/data/examples/deblur/visualize-stats/1/deblur-stats.qza'
fn <- 'deblur-stats.qza'
request$urlretrieve(url, fn)
deblur_stats <- Artifact$load(fn)
action_results <- deblur_actions$visualize_stats(
deblur_stats=deblur_stats,
)
deblur_stats_viz_viz <- action_results$visualization
from q2_deblur._examples import visualize_stats_example
visualize_stats_example(use)
- Links
- Documentation
- Source Code
- Stars
- 2
- Last Commit
- 7173663
- Available Distros
- 2024.10
- 2024.10/amplicon
- 2024.5
- 2024.5/amplicon
- 2024.2
- 2024.2/amplicon
- 2023.9
- 2023.9/amplicon
- 2023.7
- 2023.7/core