This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv

This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv

This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv

This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv

This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv

This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv

This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv

This is a QIIME 2 plugin supporting operations on sample by feature tables, such as filtering, merging, and transforming tables.

version: 2024.10.0
website: https://github.com/qiime2/q2-feature-table
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
rarefymethodRarefy table
subsample-idsmethodSubsample table
presence-absencemethodConvert to presence/absence
relative-frequencymethodConvert to relative frequencies
transposemethodTranspose a feature table.
groupmethodGroup samples or features by a metadata column
mergemethodCombine multiple tables
merge-seqsmethodCombine collections of feature sequences
merge-taxamethodCombine collections of feature taxonomies
rename-idsmethodRenames sample or feature ids in a table
filter-samplesmethodFilter samples from table
filter-features-conditionallymethodFilter features from a table based on abundance and prevalence
filter-featuresmethodFilter features from table
filter-seqsmethodFilter features from sequences
splitmethodSplit one feature table into many
tabulate-feature-frequenciesmethodTabulate feature frequencies
tabulate-sample-frequenciesmethodTabulate sample frequencies
summarizevisualizerSummarize table
tabulate-seqsvisualizerView sequence associated with each feature
core-featuresvisualizerIdentify core features in table
heatmapvisualizerGenerate a heatmap representation of a feature table
summarize-pluspipelineSummarize table plus


feature-table rarefy

Subsample frequencies from all samples so that the sum of frequencies in each sample is equal to sampling-depth.

Citations

Weiss et al., 2017

Inputs

table: FeatureTable[Frequency]

The feature table to be rarefied.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total frequency that each sample should be rarefied to. Samples where the sum of frequencies is less than the sampling depth will be not be included in the resulting table.[required]

with_replacement: Bool

Rarefy with replacement by sampling from the multinomial distribution instead of rarefying without replacement.[default: False]

Outputs

rarefied_table: FeatureTable[Frequency]

The resulting rarefied feature table.[required]


feature-table subsample-ids

Randomly pick samples or features, without replacement, from the table.

Inputs

table: FeatureTable[Frequency]

The feature table to be sampled.[required]

Parameters

subsampling_depth: Int % Range(1, None)

The total number of samples or features to be randomly sampled. Samples or features that are reduced to a zero sum will not be included in the resulting table.[required]

axis: Str % Choices('sample', 'feature')

The axis to sample over. If "sample" then samples will be randomly selected to be retained. If "feature" then a random set of features will be selected to be retained.[required]

Outputs

sampled_table: FeatureTable[Frequency]

The resulting subsampled feature table.[required]


feature-table presence-absence

Convert frequencies to binary values indicating presence or absence of a feature in a sample.

Inputs

table: FeatureTable[Frequency | RelativeFrequency]

The feature table to be converted into presence/absence abundances.[required]

Outputs

presence_absence_table: FeatureTable[PresenceAbsence]

The resulting presence/absence feature table.[required]


feature-table relative-frequency

Convert frequencies to relative frequencies by dividing each frequency in a sample by the sum of frequencies in that sample.

Inputs

table: FeatureTable[Frequency]

The feature table to be converted into relative frequencies.[required]

Outputs

relative_frequency_table: FeatureTable[RelativeFrequency]

The resulting relative frequency feature table.[required]


feature-table transpose

Transpose the rows and columns (typically samples and features) of a feature table.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table to be transposed.[required]

Outputs

transposed_feature_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting transposed feature table.[required]


feature-table group

Group samples or features in a feature table using metadata to define the mapping of IDs to a group.

Inputs

table: FeatureTable[Frequency]

The table to group samples or features on.[required]

Parameters

axis: Str % Choices('feature', 'sample')

Along which axis to group. Each ID in the given axis must exist in metadata.[required]

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will become a new ID for the table on the given axis.[required]

mode: Str % Choices('mean-ceiling', 'median-ceiling', 'sum')

How to combine samples or features within a group. sum will sum the frequencies across all samples or features within a group; mean-ceiling will take the ceiling of the mean of these frequencies; median-ceiling will take the ceiling of the median of these frequencies.[required]

Outputs

grouped_table: FeatureTable[Frequency]

A table that has been grouped along the given axis. IDs on that axis are replaced by values in the metadata column.[required]

Examples

group_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/group/1/sample-metadata.tsv'

# Combine samples from the same body-site into single sample. Feature
# frequencies will be the median across the samples being combined, rounded
# up to the nearest whole number.
qiime feature-table group \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --m-metadata-column body-site \
  --p-mode median-ceiling \
  --p-axis sample \
  --o-grouped-table body-site-table.qza

feature-table merge

Combines feature tables using the overlap_method provided.

Inputs

tables: List[FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]]

The collection of feature tables to be merged.[required]

Parameters

overlap_method: Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample', 'sum') | Str % Choices('average', 'error_on_overlapping_feature', 'error_on_overlapping_sample') | Str % Choices('error_on_overlapping_feature', 'error_on_overlapping_sample', 'union')

Method for handling overlapping ids.[default: 'error_on_overlapping_sample']

Outputs

merged_table: FeatureTable[Frequency] | FeatureTable[RelativeFrequency] | FeatureTable[PresenceAbsence]

The resulting merged feature table.[required]

Examples

feature_table_merge_two_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/1/feature-table2.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza \
  --o-merged-table merged-table.qza

feature_table_merge_three_tables

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table1.qza'

wget -O 'feature-table2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table2.qza'

wget -O 'feature-table3.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge/2/feature-table3.qza'

qiime feature-table merge \
  --i-tables feature-table1.qza feature-table2.qza feature-table3.qza \
  --p-overlap-method sum \
  --o-merged-table merged-table.qza

feature-table merge-seqs

Combines feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Sequence]]

The collection of feature sequences to be merged.[required]

Outputs

merged_data: FeatureData[Sequence]

The resulting collection of feature sequences containing all feature sequences provided.[required]

Examples

feature_table_merge_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'seqs1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs1.qza'

wget -O 'seqs2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-seqs/1/seqs2.qza'

qiime feature-table merge-seqs \
  --i-data seqs1.qza seqs2.qza \
  --o-merged-data merged-data.qza

feature-table merge-taxa

Combines a pair of feature data objects which may or may not contain data for the same features. If different feature data is present for the same feature id in the inputs, the data from the first will be propagated to the result.

Inputs

data: List[FeatureData[Taxonomy]]

The collection of feature taxonomies to be merged.[required]

Outputs

merged_data: FeatureData[Taxonomy]

The resulting collection of feature taxonomies containing all feature taxonomies provided.[required]

Examples

feature_table_merge_taxa

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'tax1.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax1.qza'

wget -O 'tax2.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/merge-taxa/1/tax2.qza'

qiime feature-table merge-taxa \
  --i-data tax1.qza tax2.qza \
  --o-merged-data merged-data.qza

feature-table rename-ids

Renames the sample or feature ids in a feature table using metadata to define the new ids.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to be renamed[required]

Parameters

metadata: MetadataColumn[Categorical]

A metadata column defining the new ids. Each original id must map to a new unique id. If strict mode is used, then every id in the original table must have a new id.[required]

axis: Str % Choices('feature', 'sample')

Along which axis to rename the ids.[default: 'sample']

strict: Bool

Whether the naming needs to be strict (each id in the table must have a new id). Otherwise, only the ids described in metadata will be renamed and the others will keep their original id names.[default: False]

Outputs

renamed_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

A table which has new ids, where the ids are replaced by values in the metadata column.[required]


feature-table filter-samples

Filter samples from table based on frequency and/or metadata. Any features with a frequency of zero after sample filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which samples should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a sample must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_features: Int

The minimum number of features that a sample must have to be retained.[default: 0]

max_features: Int

The maximum number of features that a sample can have to be retained. If no value is provided this will default to infinity (i.e., no maximum feature filter will be applied).[optional]

metadata: Metadata

Sample metadata used with where parameter when selecting samples to retain, or with exclude_ids when selecting samples to discard.[optional]

where: Str

SQLite WHERE clause specifying sample metadata criteria that must be met to be included in the filtered feature table. If not provided, all samples in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the samples selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_features: Bool

If true, features which are not present in any retained samples are dropped.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by sample.[required]

Examples

filter_to_subject1

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/1/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1"' \
  --o-filtered-table filtered-table.qza

filter_to_skin

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/2/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site] IN ("left palm", "right palm")' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/3/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_to_gut_or_abx

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/4/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[body-site]="gut" OR [reported-antibiotic-usage]="Yes"' \
  --o-filtered-table filtered-table.qza

filter_to_subject1_not_gut

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/feature-table.qza'

wget -O 'sample-metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/5/sample-metadata.tsv'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --m-metadata-file sample-metadata.tsv \
  --p-where '[subject]="subject-1" AND NOT [body-site]="gut"' \
  --o-filtered-table filtered-table.qza

filter_min_features

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/6/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-features 10 \
  --o-filtered-table filtered-table.qza

filter_min_frequency

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-samples/7/feature-table.qza'

qiime feature-table filter-samples \
  --i-table feature-table.qza \
  --p-min-frequency 1500 \
  --o-filtered-table filtered-table.qza

feature-table filter-features-conditionally

Filter features based on the relative abundance in a certain portion of samples (i.e., features must have a relative abundance of at least abundance in at least prevalence number of samples). Any samples with a frequency of zero after feature filtering will also be removed.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The feature table from which features should be filtered.[required]

Parameters

abundance: Float % Range(0, 1)

The minimum relative abundance for a feature to be retained.[required]

prevalence: Float % Range(0, 1)

The minimum portion of samples that a feature must have a relative abundance of at least abundance to be retained.[required]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The resulting feature table filtered by feature.[required]

Examples

feature_table_filter_features_conditionally

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features-conditionally/1/feature-table.qza'

# Retain only features with at least 1%% abundance in at least 34%% of
# samples.
qiime feature-table filter-features-conditionally \
  --i-table feature-table.qza \
  --p-abundance 0.01 \
  --p-prevalence 0.34 \
  --o-filtered-table filtered-table.qza

feature-table filter-features

Filter features from table based on frequency and/or metadata. Any samples with a frequency of zero after feature filtering will also be removed. See the filtering tutorial on https://docs.qiime2.org for additional details.

Inputs

table: FeatureTable[Frequency]

The feature table from which features should be filtered.[required]

Parameters

min_frequency: Int

The minimum total frequency that a feature must have to be retained.[default: 0]

max_frequency: Int

The maximum total frequency that a feature can have to be retained. If no value is provided this will default to infinity (i.e., no maximum frequency filter will be applied).[optional]

min_samples: Int

The minimum number of samples that a feature must be observed in to be retained.[default: 0]

max_samples: Int

The maximum number of samples that a feature can be observed in to be retained. If no value is provided this will default to infinity (i.e., no maximum sample filter will be applied).[optional]

metadata: Metadata

Feature metadata used with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the feature table will be retained.[optional]

exclude_ids: Bool

If true, the features selected by metadata or where parameters will be excluded from the filtered table instead of being retained.[default: False]

filter_empty_samples: Bool

If true, drop any samples where none of the retained features are present.[default: True]

allow_empty_table: Bool

If true, the filtered table may be empty. Default behavior is to raise an error if the filtered table is empty.[default: False]

Outputs

filtered_table: FeatureTable[Frequency]

The resulting feature table filtered by feature.[required]

Examples

filter_features_min_samples

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/filter-features/1/feature-table.qza'

qiime feature-table filter-features \
  --i-table feature-table.qza \
  --p-min-samples 2 \
  --o-filtered-table filtered-table.qza

feature-table filter-seqs

Filter features from sequences based on a feature table or metadata. See the filtering tutorial on https://docs.qiime2.org for additional details. This method can filter based on ids in a table or a metadata file, but not both (i.e., the table and metadata options are mutually exclusive).

Inputs

data: FeatureData[Sequence¹ | AlignedSequence²]

The sequences from which features should be filtered.[required]

table: FeatureTable[Frequency]

Table containing feature ids used for id-based filtering.[optional]

Parameters

metadata: Metadata

Feature metadata used for id-based filtering, with where parameter when selecting features to retain, or with exclude_ids when selecting features to discard.[optional]

where: Str

SQLite WHERE clause specifying feature metadata criteria that must be met to be included in the filtered feature table. If not provided, all features in metadata that are also in the sequences will be retained.[optional]

exclude_ids: Bool

If true, the features selected by the metadata (with or without the where parameter) or table parameter will be excluded from the filtered sequences instead of being retained.[default: False]

Outputs

filtered_data: FeatureData[Sequence¹ | AlignedSequence²]

The resulting filtered sequences.[required]


feature-table split

Splits one feature table into many feature tables, where splits are defined by values in metadata column.

Inputs

table: FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]

The table to split.[required]

Parameters

metadata: MetadataColumn[Categorical]

A column defining the groups. Each unique value will define a split feature table.[required]

filter_empty_features: Bool

If true, features which are not present in a split feature table are dropped.[default: True]

Outputs

tables: Collection[FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Composition⁴]]

Directory where feature tables split based on metadata values should be written.[required]


feature-table tabulate-feature-frequencies

Tabulate sample count and total frequency per feature.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

Examples

feature_table_tabulate_feature_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-feature-frequencies/1/feature-table.qza'

qiime feature-table tabulate-feature-frequencies \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza

feature-table tabulate-sample-frequencies

Tabulate feature count and total frequency per sample.

Inputs

table: FeatureTable[Frequency | PresenceAbsence | RelativeFrequency]

The input feature table.[required]

Outputs

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

Examples

feature_table_tabulate_sample_frequencies

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-sample-frequencies/1/feature-table.qza'

qiime feature-table tabulate-sample-frequencies \
  --i-table feature-table.qza \
  --o-sample-frequencies sample-frequencies.qza

feature-table summarize

Generate visual and tabular summaries of a feature table.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

sample_metadata: Metadata

The sample metadata.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_summarize

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize/1/feature-table.qza'

qiime feature-table summarize \
  --i-table feature-table.qza \
  --o-visualization table.qzv

feature-table tabulate-seqs

Generate tabular view of feature identifier to sequence mapping, including links to BLAST each sequence against the NCBI nt database.

Citations

Coordinators, 2017; Johnson et al., 2008

Inputs

data: FeatureData[Sequence | AlignedSequence]

The feature sequences to be tabulated.[required]

taxonomy: Collection[FeatureData[Taxonomy]]

The taxonomic classifications of the tabulated features.[optional]

Parameters

metadata: Metadata

Any additional metadata for the tabulated features.[optional]

merge_method: Str % Choices('strict', 'union', 'intersect')

Method that joins data sets[default: 'strict']

Outputs

visualization: Visualization

<no description>[required]

Examples

feature_table_tabulate_seqs

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/1/rep-seqs.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_single_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-single-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/rep-seqs-single-taxon.qza'

wget -O 'single-taxonomy.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/2/single-taxonomy.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-single-taxon.qza \
  --i-taxonomy single-taxonomy.qza \
  --o-visualization rep-seqs.qzv

feature_table_tabulate_seqs_multi_taxon

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'rep-seqs-multi-taxon.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/tabulate-seqs/3/rep-seqs-multi-taxon.qza'

qiime feature-table tabulate-seqs \
  --i-data rep-seqs-multi-taxon.qza \
  --i-taxonomy multi-taxonomy/ \
  --o-visualization rep-seqs.qzv

feature-table core-features

Identify "core" features, which are features observed in a user-defined fraction of the samples. Since the core features are a function of the fraction of samples that the feature must be observed in to be considered core, this is computed over a range of fractions defined by the min_fraction, max_fraction, and steps parameters.

Inputs

table: FeatureTable[Frequency]

The feature table to use in core features calculations.[required]

Parameters

min_fraction: Float % Range(0.0, 1.0, inclusive_start=False)

The minimum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 0.5]

max_fraction: Float % Range(0.0, 1.0, inclusive_end=True)

The maximum fraction of samples that a feature must be observed in for that feature to be considered a core feature.[default: 1.0]

steps: Int % Range(2, None)

The number of steps to take between min_fraction and max_fraction for core features calculations. This parameter has no effect if min_fraction and max_fraction are the same value.[default: 11]

Outputs

visualization: Visualization

<no description>[required]


feature-table heatmap

Generate a heatmap representation of a feature table with optional clustering on both the sample and feature axes. Tip: To generate a heatmap containing taxonomic annotations, use qiime taxa collapse to collapse the feature table at the desired taxonomic level.

Citations

Hunter, 2007

Inputs

table: FeatureTable[Frequency]

The feature table to visualize.[required]

Parameters

sample_metadata: MetadataColumn[Categorical]

Annotate the sample IDs with these sample metadata values. When metadata is present and cluster='feature', samples will be sorted by the metadata values.[optional]

feature_metadata: MetadataColumn[Categorical]

Annotate the feature IDs with these feature metadata values. When metadata is present and cluster='sample', features will be sorted by the metadata values.[optional]

normalize: Bool

Normalize the feature table by adding a psuedocount of 1 and then taking the log10 of the table.[default: True]

title: Str

Optional custom plot title.[optional]

metric: Str % Choices('braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')

Metrics exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'euclidean']

method: Str % Choices('average', 'centroid', 'complete', 'median', 'single', 'ward', 'weighted')

Clustering methods exposed by seaborn (see http://seaborn.pydata.org/generated/seaborn.clustermap.html#seaborn.clustermap for more detail).[default: 'average']

cluster: Str % Choices('both', 'features', 'none', 'samples')

Specify which axes to cluster.[default: 'both']

color_scheme: Str % Choices('Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r', 'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'mako', 'mako_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r', 'spectral', 'spectral_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r', 'winter', 'winter_r')

The matplotlib colorscheme to generate the heatmap with.[default: 'rocket']

Outputs

visualization: Visualization

<no description>[required]


feature-table summarize-plus

Generate visual and tabular summaries of a feature table. Tabulate sample and feature frequencies.

Inputs

table: FeatureTable[Frequency | PresenceAbsence]

The feature table to be summarized.[required]

Parameters

metadata: Metadata

The sample metadata.[optional]

Outputs

feature_frequencies: ImmutableMetadata

Per-sample and total frequencies per feature.[required]

sample_frequencies: ImmutableMetadata

Observed feature count and total frequencies per sample.[required]

summary: Visualization

Visual summary of feature table[required]

Examples

feature_table_summarize_plus

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'feature-table.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/feature-table/summarize-plus/1/feature-table.qza'

qiime feature-table summarize-plus \
  --i-table feature-table.qza \
  --o-feature-frequencies feature-frequencies.qza \
  --o-sample-frequencies sample-frequencies.qza \
  --o-summary visual summary.qzv