This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv

This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv

This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv

This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv

This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv

This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv

This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv

This QIIME 2 plugin supports statistical analyses.

version: 0+untagged.28.g5ad6f19
website: https://github.com/qiime2/q2-stats
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org

Actions

NameTypeShort Description
mann-whitney-umethodMann-Whitney U Test
wilcoxon-srtmethodWilcoxon Signed Rank Test
facet-withinmethodFacet within outer group
facet-acrossmethodFacet across outer group
collate-statsmethodCombine and FDR correct multiple stats
prep-alpha-distributionmethodAlpha diversity to Dist1D
plot-raincloudsvisualizerRaincloud plots
mann-whitney-u-facetpipelinePer-facet Mann-Whitney U Test
wilcoxon-srt-facetpipelinePer-facet Wilcoxon Signed Rank Test
alpha-group-significancepipelineAlpha group significance test and plot

Artifact Classes

Dist1D[Ordered, Independent]
Dist1D[Ordered, Matched]
Dist1D[NestedUnordered, Independent]
Dist1D[NestedOrdered, Matched]
Dist1D[Unordered, Matched]
Dist1D[Multi, Matched]
Dist1D[NestedOrdered, Independent]
Dist1D[Unordered, Independent]
Dist1D[Multi, Independent]
Dist1D[NestedUnordered, Matched]
StatsTable[Pairwise]

Formats

NDJSONFileFormat
DataResourceSchemaFileFormat
TabularDataResourceDirFmt
TableJSONLFileFormat
TableJSONLDirFmt


stats mann-whitney-u

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Unordered | Ordered, Independent]

<no description>[required]

against_each: Dist1D[Unordered | Ordered, Matched | Independent]

<no description>[optional]

Parameters

compare: Str % Choices('reference', 'all-pairwise')

The comparison that will be used to analyze the input distribution. Either "reference" or "all-pairwise" must be selected. The "reference" comparison defines Group A as the reference/control provided to reference_group (sourced from either reference_column or control_column), and Group B as all other groups. The "all-pairwise" comparison compares all groups to all other groups. If against_each is used, this will define Group B.[required]

reference_group: Str

If "reference" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions, "asymptotic" will use a normal distribution, and "auto" will use either "exact" when one of the groups has less than 8 observations and there are no ties, otherwise "asymptotic".[default: 'auto']

Outputs

stats: StatsTable[Pairwise]

The Mann-Whitney U table for either the "reference" or "all-pairwise" comparison.[required]

Examples

mann_whitney_pairwise

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/timedist.qza'

wget -O 'refdist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u/1/refdist.qza'

qiime stats mann-whitney-u \
  --i-distribution refdist.qza \
  --p-compare all-pairwise \
  --i-against-each timedist.qza \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats wilcoxon-srt

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Ordered, Matched]

<no description>[required]

Parameters

compare: Str % Choices('baseline', 'consecutive')

The type of comparison that will be used to analyze the input distribution. The "baseline" comparison defines Group A as the timepoint provided to baseline_group (sourced from time_column), and Group B as all other timepoints contained in time_column. The "consecutive" comparison defines Group A as "timepoint n", and Group B as "timepoint n+1" (both sourced from time_column).[required]

baseline_group: Str

If "baseline" is the selected comparison, this is the column that will be used to compare all other groups against.[optional]

alternative: Str % Choices('two-sided', 'greater', 'less')

The "two-sided" alternative hypothesis is that the median of Group A does not equal the median of Group B. The "greater" alternative hypothesis is that the median of group A is greater than the median of Group B. The "less" alternative hypothesis is that the median of group A is less than the median of Group B.[default: 'two-sided']

p_val_approx: Str % Choices('auto', 'exact', 'asymptotic')

"exact" will calculate an exact p-value for distributions of up to 25 (inclusive) measurements, "asymptotic" will use a normal distribution, and "auto" will use either "exact" or "approx" depending on size.[default: 'auto']

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: False]

Outputs

stats: StatsTable[Pairwise]

The Wilcoxon SRT table for either the "baseline" or "consecutive" comparison.[required]

Examples

wilcoxon_baseline0

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'timedist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt/1/timedist.qza'

qiime stats wilcoxon-srt \
  --i-distribution timedist.qza \
  --p-compare baseline \
  --p-baseline-group 0 \
  --p-p-val-approx asymptotic \
  --o-stats stats.qza

stats facet-within

Facets a distribution into independent distributions where each facet is an inner slice from the outer group.

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched | Independent]

A nested or multi Dist1D which will be partitioned into undordered and independent subgroups.[required]

Outputs

distributions: Collection[Dist1D[Unordered, Independent]]

A collection of unordered and independent Dist1Ds.[required]


stats facet-across

Facet a distribution into per-class/level distributions where each facet preserves the outer group structure.

Inputs

distribution: Dist1D[NestedOrdered¹ | NestedUnordered², Independent¹ | Matched²]

A nested Dist1D which will be partitioned into non-nested Dist1D[required]

Outputs

distributions: Collection[Dist1D[Ordered¹ | Unordered², Independent¹ | Matched²]]

A collection of non-nested Dist1Ds[required]


stats collate-stats

Converts a collection of stats tables into a single table

Inputs

tables: Collection[StatsTable[Pairwise]]

<no description>[required]

Outputs

table: StatsTable[Pairwise]

<no description>[required]


stats prep-alpha-distribution

Alpha diversity to Dist1D

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the Dist1D to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the Dist1D to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

The resulting Dist1D.[required]


stats plot-rainclouds

Plot raincloud distributions for each group.

Inputs

data: Dist1D[Multi | Ordered | Unordered | NestedOrdered | NestedUnordered, Matched | Independent]

The group distributions to plot.[required]

stats: StatsTable[Pairwise]

Statistical tests to display.[optional]

Outputs

visualization: Visualization

<no description>[required]

Examples

plot_rainclouds

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/plot-rainclouds/1/dist.qza'

qiime stats plot-rainclouds \
  --i-data dist.qza \
  --o-visualization raincloud-plot.qzv

stats mann-whitney-u-facet

Citations

Mann & Whitney, 1947

Inputs

distribution: Dist1D[Multi, Independent] | Dist1D[NestedOrdered | NestedUnordered, Matched] | Dist1D[NestedOrdered | NestedUnordered, Independent]

<no description>[required]

Parameters

facet: Str % Choices('within') | Str % Choices('within') | Str % Choices('within', 'across')

Whether to facet within or across the outer group.[default: 'within']

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

mann_whitney_u_facet_across

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/1/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet across \
  --o-stats stats.qza

mann_whitney_u_facet_within

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/mann-whitney-u-facet/2/dist.qza'

qiime stats mann-whitney-u-facet \
  --i-distribution dist.qza \
  --p-facet within \
  --o-stats stats.qza

stats wilcoxon-srt-facet

Citations

Wilcoxon, 1945

Inputs

distribution: Dist1D[Multi | NestedOrdered | NestedUnordered, Matched]

<no description>[required]

Parameters

ignore_empty_comparator: Bool

Ignore any group that does not have any overlapping subjects with comparison group. These groups will have NaNs in the stats table output[default: True]

Outputs

stats: StatsTable[Pairwise]

<no description>[required]

Examples

wilcoxon_srt_facet

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'dist.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/wilcoxon-srt-facet/1/dist.qza'

qiime stats wilcoxon-srt-facet \
  --i-distribution dist.qza \
  --o-stats stats.qza

stats alpha-group-significance

Will select between Wilcoxon SRT and Mann-Whitney U depending on the presence of repeated measures.

Inputs

alpha_diversity: SampleData[AlphaDiversity]

Alpha diversity which will become the "measure"[required]

Parameters

metadata: Metadata

Sample metadata to use[required]

columns: List[Str]

Columns to include as group information[required]

subject: Str % Choices('') | Str | Str % Choices('') | Str

If provided, will cause the results to be matched for repeated measures.[default: '']

timepoint: Str % Choices('') | Str % Choices('') | Str | Str

If provided, will cause the results to be stratified by timepoint. Required if using subject.[default: '']

Outputs

distribution: Dist1D[Multi, Independent] | Dist1D[Multi, Matched] | Dist1D[NestedOrdered, Independent] | Dist1D[NestedOrdered, Matched]

Dist1D generated by metadata and alpha diversity.[required]

stats: StatsTable[Pairwise]

A stats table of the per-group/timepoint results[required]

raincloud: Visualization

A visualization of the distribution and statistics[required]

Examples

alpha_group_significance_faith_pd

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'alpha-div-faith-pd.qza' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/alpha-div-faith-pd.qza'

wget -O 'metadata.tsv' \
  'https://amplicon-docs.qiime2.org/en/latest/data/examples/stats/alpha-group-significance/1/metadata.tsv'

qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --p-subject mouse_id \
  --p-timepoint days_post_transplant \
  --o-distribution dist.qza \
  --o-stats stats.qza \
  --o-raincloud raincloud.qzv
qiime stats alpha-group-significance \
  --i-alpha-diversity alpha-div-faith-pd.qza \
  --m-metadata-file metadata.tsv \
  --p-columns genotype donor_status \
  --o-distribution dist2.qza \
  --o-stats stats2.qza \
  --o-raincloud raincloud2.qzv