A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity

A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity

A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity

A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity

A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity

A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity

A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity

A plugin providing bootstrapped and rarefaction-based (i.e., resampled) diversity analyses, designed to mirror the interface of q2-diversity.

version: 2024.10.beta+10.g3173830
website: https://library.qiime2.org/plugins/caporaso-lab/q2-boots
user support:
Please post to the QIIME 2 forum for help with this plugin: https://forum.qiime2.org
citations:
Raspet et al., 2025

Actions

NameTypeShort Description
alpha-averagemethodAverage alpha diversity vectors.
beta-averagemethodAverage beta diversity distance matrices.
resamplepipelineResample feature table, returning `n` feature tables.
alpha-collectionpipelinePerform resampled alpha diversity, returning `n` result vectors.
alphapipelinePerform resampled alpha diversity, returning average result vector.
beta-collectionpipelinePerform resampled beta diversity, returning `n` distance matrices.
betapipelinePerform resampled beta diversity, returning average distance matrix.
core-metricspipelinePerform resampled "core metrics" analysis.
kmer-diversitypipelinePerform resampled "core metrics" analysis on kmerized features.


boots alpha-average

Compute the per-sample average across a collection of alpha diversity vectors computed from the same samples.

Citations

Raspet et al., 2025

Inputs

data: Collection[SampleData[AlphaDiversity]]

Alpha diversity vectors to be averaged.[required]

Parameters

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[required]

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]


boots beta-average

Compute the average distance matrix across a collection of distance matrices.

Citations

Raspet et al., 2025

Inputs

data: Collection[DistanceMatrix]

Distance matrices to be average.[required]

Parameters

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[required]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots resample

Resample table to sampling_depth total observations with replacement (i.e., bootstrapping) or without replacement (i.e., rarefaction) n times, to generate n resampled feature tables.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency]

The input feature table.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

Examples

Generate 10 bootstrapped tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/1/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --o-resampled-tables bootstrapped-tables/

Generate 10 rarefied tables.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/resample/2/table.qza'

qiime boots resample \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --o-resampled-tables rarefaction-tables/

boots alpha-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

Outputs

alpha_diversities: Collection[SampleData[AlphaDiversity]]

n alpha diversity vectors, each containing per-sample alpha diversity scores for the same samples.[required]


boots alpha

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified alpha diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average per-sample alpha diversities are returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metric: Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'faith_pd', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')

The alpha diversity metric to be computed.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('mean', 'median')

Method to use for averaging.[default: 'median']

Outputs

average_alpha_diversity: SampleData[AlphaDiversity]

The average alpha diversity vector.[required]

Examples

Bootstrapped observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/1/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-bootstrapped.qza

Rarefaction-based observed features.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/alpha/2/table.qza'

qiime boots alpha \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric observed_features \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method median \
  --o-average-alpha-diversity observed-features-rarefaction.qza

boots beta-collection

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts can be used, for example, to explore the variance across n iterations of resampling.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

distance_matrices: Collection[DistanceMatrix]

n beta diversity distance matrices, each containing distances between all pairs of samples and computed from resampled feature tables.[required]

Examples

Bootstrapped Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/1/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-metric braycurtis \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-bootstrapped.qza

Rarefaction-based Bray-Curtis.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/beta-collection/2/table.qza'

qiime boots beta \
  --i-table table.qza \
  --p-sampling-depth 20 \
  --p-metric braycurtis \
  --p-n 10 \
  --p-no-replacement \
  --p-average-method medoid \
  --o-average-distance-matrix braycurtis-rarefaction.qza

boots beta

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes the specified beta diversity metric on each resulting table. The resulting artifacts are then averaged using the method specified by average_method, and the resulting average beta diversity distance matrix is returned.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

metric: Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'generalized_unifrac', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'unweighted_unifrac', 'weighted_normalized_unifrac', 'weighted_unifrac', 'yule')

The beta diversity metric to be computed.[required]

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging.[default: 'non-metric-median']

bypass_tips: Bool

Ignore tips of tree in phylogenetic diversity calculations, trading specificity for reduced compute time. This has the effect of collapsing the phylogeny, and is analogous (in concept) to moving from 99% to 97% OTUs.[default: False]

pseudocount: Int % Range(1, None)

A pseudocount to handle zeros for compositional metrics. This is ignored for other metrics.[default: 1]

alpha: Float % Range(0, 1, inclusive_end=True)

The alpha value used with the generalized UniFrac metric.[optional]

variance_adjusted: Bool

Perform variance adjustment based on Chang et al. BMC Bioinformatics (2011) for phylogenetic diversity metrics.[default: False]

Outputs

average_distance_matrix: DistanceMatrix

The average distance matrix.[required]


boots core-metrics

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample, and then computes common alpha and beta diversity on each resulting table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with PCoA matrices and Emperor plots.

Citations

Raspet et al., 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

phylogeny: Phylogeny[Rooted]

The phylogenetic tree to use in phylogenetic diversity calculations. All feature ids in table must be present in this tree, but this tree can contain feature ids that are not present in table.[optional]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

emperor_plots: Collection[Visualization]

Emperor plot for each beta diversity metric.[required]

Examples

Bootstrapped core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/1/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

Rarefaction-based core metrics.

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/table.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/core-metrics/2/metadata.tsv'

qiime boots core-metrics \
  --i-table table.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-no-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-core-metrics

boots kmer-diversity

Given a single feature table as input, this action resamples the feature table n times to a total frequency of sampling depth per sample. It then splits all input sequences into kmers, and computes common alpha and beta diversity on each resulting kmer table. The resulting artifacts are then averaged using the method specified by alpha_average_method and beta_average_method parameters. The resulting average alpha and beta diversity artifacts are returned, along with a scatter plot integrated all alpha diversity metrics and the PCoA axes for all beta diversity metrics.

Citations

Raspet et al., 2025; Bokulich, 2025

Inputs

table: FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]

The input feature table.[required]

sequences: FeatureData[Sequence | RNASequence | ProteinSequence]

Input sequences for kmerization.[required]

Parameters

sampling_depth: Int % Range(1, None)

The total number of observations that each sample in table should be resampled to. Samples where the total number of observations in table is less than sampling_depth will be not be included in the output tables.[required]

metadata: Metadata

The sample metadata used in generating Emperor plots.[required]

n: Int % Range(1, None)

The number of resampled tables that should be generated.[required]

replacement: Bool

Resample table with replacement (i.e., bootstrap) or without replacement (i.e., rarefaction).[required]

kmer_size: Int

Length of kmers to generate.[default: 16]

tfidf: Bool

If True, kmers will be scored using TF-IDF and output frequencies will be weighted by scores. If False, kmers are counted without TF-IDF scores.[default: False]

max_df: Float % Range(0, 1, inclusive_end=True) | Int

Ignore kmers that have a frequency strictly higher than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1.0]

min_df: Float % Range(0, 1) | Int

Ignore kmers that have a frequency strictly lower than the given threshold. If float, the parameter represents a proportion of sequences, if an integer it represents an absolute count.[default: 1]

max_features: Int

If not None, build a vocabulary that only considers the top max_features ordered by frequency (or TF-IDF score).[optional]

alpha_average_method: Str % Choices('mean', 'median')

Method to use for averaging alpha diversity.[default: 'median']

beta_average_method: Str % Choices('non-metric-mean', 'non-metric-median', 'medoid')

Method to use for averaging beta diversity.[default: 'non-metric-median']

pc_dimensions: Int

Number of principal coordinate dimensions to keep for plotting.[default: 3]

color_by: Str

Categorical measure from the input Metadata that should be used for color-coding the scatterplot.[optional]

norm: Str % Choices('None', 'l1', 'l2')

Normalization procedure applied to TF-IDF scores. Ignored if tfidf=False. l2: Sum of squares of vector elements is 1. l1: Sum of absolute values of vector elements is 1.[default: 'None']

alpha_metrics: List[Str % Choices('ace', 'berger_parker_d', 'brillouin_d', 'chao1', 'chao1_ci', 'dominance', 'doubles', 'enspie', 'esty_ci', 'fisher_alpha', 'gini_index', 'goods_coverage', 'heip_e', 'kempton_taylor_q', 'lladser_pe', 'margalef', 'mcintosh_d', 'mcintosh_e', 'menhinick', 'michaelis_menten_fit', 'observed_features', 'osd', 'pielou_e', 'robbins', 'shannon', 'simpson', 'simpson_e', 'singles', 'strong')]

<no description>[default: ['pielou_e', 'observed_features', 'shannon']]

beta_metrics: List[Str % Choices('aitchison', 'braycurtis', 'canberra', 'canberra_adkins', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule')]

<no description>[default: ['braycurtis', 'jaccard']]

Outputs

resampled_tables: Collection[FeatureTable[Frequency]]

The n resampled tables.[required]

kmer_tables: Collection[FeatureTable[Frequency]]

The n kmer tables.[required]

alpha_diversities: Collection[SampleData[AlphaDiversity]]

Average alpha diversity vector for each metric.[required]

distance_matrices: Collection[DistanceMatrix]

Average beta diversity distance matrix for each metric.[required]

pcoas: Collection[PCoAResults]

PCoA matrix for each beta diversity metric.[required]

scatter_plot: Visualization

Scatter plot including alpha diversity and pcoa results for all selected metrics.[required]

Examples

Bootstrapped kmer diversity

[Command Line]
[Python API]
[Galaxy]
[R API]
[View Source]
wget -O 'table.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/table.qza'

wget -O 'sequences.qza' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/sequences.qza'

wget -O 'metadata.tsv' \
  'https://q2-boots.readthedocs.io/en/latest/data/examples/boots/kmer-diversity/1/metadata.tsv'

qiime boots kmer-diversity \
  --i-table table.qza \
  --i-sequences sequences.qza \
  --m-metadata-file metadata.tsv \
  --p-sampling-depth 20 \
  --p-n 10 \
  --p-kmer-size 5 \
  --p-replacement \
  --p-alpha-average-method median \
  --p-beta-average-method medoid \
  --output-dir boots-kmer-diversity